Supplemental Materials and Methods and Figures for the manuscript:

A Proteomics and transcriptomics approach to identify leukemic stem cell markers

Francesco Bonardi¹, Fabrizia Fusetti², Patrick Deelen¹, Djoke van Gosliga¹, E. Vellenga¹ and J.J. Schuringa^{1#}.

¹Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands. ²Department of Biochemistry, Enzymology of membrane proteins, and Netherlands Proteomics Center, University of Groningen, The Netherlands. #to whom correspondence should be addressed, email: j.j.schuringa@umcg.nl

Supplemental Figures

Supplemental figure 1. Bonardi et al 2012.

Supplemental Materials and Methods

Algoritm 1: Method used to select AMI CD34+ markers

Require: $A \leftarrow$ expression data of AML CD34+ and BM CD34+ samples

1: $A2 \leftarrow$ genes from A that have relevant GO annotation

2: perform one-sided Mann-Whitney U test

3: select significantly upregulated genes in AML CD34+ using multivariate permutations

4: calculate information gain for selected genes

5: $g \leftarrow$ all gene indices in A2

6: **while** *g* is not empty **do**

7: find gene in *g* with max information gain

8: add this gene to *x*

9: remove this gene from g

10: remove all genes from g that are correlated to selected genes in the AML CD34+ samples

11: end while